Incremental evolution strategy for function optimization

نویسندگان

  • Steven Guan
  • Wenting Mo
چکیده

This paper presents a novel evolutionary approach for function optimization Incremental Evolution Strategy (IES). Two strategies are proposed. One is to evolve the input variables incrementally. The whole evolution consists of several phases and one more variable is focused in each phase. The number of phases is equal to the number of variables in maximum. Each phase is composed of two stages: in the single-variable evolution (SVE) stage, evolution is taken on one independent variable in a series of cutting planes; in the multi-variable evolving (MVE) stage, the initial population is formed by integrating the populations obtained by the SVE and the MVE in the last phase. And the evolution is taken on the incremented variable set. The other strategy is a hybrid of particle swarm optimization (PSO) and evolution strategy (ES). PSO is applied to adjust the cutting planes/hyper-planes (in SVEs/MVEs) while (1+1)-ES is applied to searching optima in the cutting planes/hyper-planes. The results of experiments show that the performance of IES is generally better than that of three other evolutionary algorithms, improved normal GA, PSO and SADE_CERAF, in the sense that IES finds solutions closer to the true optima and with more optimal objective values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations

In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...

متن کامل

A Novel Hybrid Algorithm for Function Optimization : Particle Swarm Assisted Incremental Evolution Strategy

1 Hybrid Evolutionary Algorithms: Methodologies, Architectures and Reviews Crina Grosan and Ajith Abraham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Assembling Strategies in Extrinsic Evolvable Hardware with Bidirectional Incremental Evolution

Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy tha...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Hybrid Intell. Syst.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2006